Global Optimization of Plug-In Hybrid Vehicle Design and Allocation to Minimize Life Cycle Greenhouse Gas Emissions
نویسندگان
چکیده
We pose a reformulated model for optimal design and allocation of conventional (CV), hybrid electric (HEV), and plug-in hybrid electric (PHEV) vehicles to obtain global solutions that minimize life cycle greenhouse gas (GHG) emissions of the fleet. The reformulation is a twice-differentiable, factorable, nonconvex mixed-integer nonlinear programming (MINLP) model that can be solved globally using a convexification-based branch-and-reduce algorithm. We compare results to a randomized multistart local-search approach for the original formulation and find that local-search algorithms locate global solutions in 59% of trials for the two-segment case and 18% of trials for the three-segment case. The results indicate that minimum GHG emissions are achieved with a mix of PHEVs sized for 25–45 miles of electric travel. Larger battery packs allow longer travel on electrical energy, but production and weight of underutilized batteries result in higher GHG emissions. Under the current average U.S. grid mix, PHEVs offer a nearly 50% reduction in life cycle GHG emissions relative to equivalent conventional vehicles and about 5% improvement over HEVs when driven on the standard urban driving cycle. Optimal allocation of different PHEVs to different drivers turns out to be of second order importance for minimizing net life cycle GHGs. [DOI: 10.1115/1.4004538]
منابع مشابه
A Minlp Model for Global Optimization of Plug-in Hybrid Vehicle Design and Allocation to Minimize Life Cycle Greenhouse Gas Emissions
Plug-in hybrid electric vehicles (PHEVs) have potential to reduce greenhouse gas (GHG) emissions in the U.S. light-duty vehicle fleet. GHG emissions from PHEVs and other vehicles depend on both vehicle design and driver behavior. We pose a twice-differentiable, factorable mixed-integer nonlinear programming model utilizing vehicle physics simulation, battery degradation data, and U.S. driving d...
متن کاملOptimal Plug-in Hybrid Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption and Greenhouse Gas Emissions
Plug-in hybrid electric vehicle (PHEV) technology has the potential to help address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption from the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To e...
متن کاملInfluence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains
We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas emissions under various scenarios and simulated driving conditions. We find that driving conditions affect economic and environmental benefits of electrified vehicles substantially: Under the urban NYC driving cycle, hybrid and plug-in vehicles c...
متن کاملGreenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways
Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleu...
متن کاملCost and Environmental Pollution Reduction Based on Scheduling of Power Plants and Plug-in Hybrid Electric Vehicles
There has been a global effort to reduce the amount of greenhouse gas emissions. In an electric resource scheduling, emission dispatch and load economic dispatch problems should be considered. Using renewable energy resources (RESs), especially wind and solar, can be effective in cutting back emissions associated with power system. Further, the application of electric vehicles (EV) capable of b...
متن کامل